Question 6. The mixture of a pure liquid and a solution in a long vertical column (i.e., horizontal dimensions << vertical dimensions) produces diffusion of solute particles and hence a refractive index gradient along the vertical dimension. A ray of light entering the column at right angles to the vertical is deviated from its original path. Find the deviation in travelling a horizontal distance d << h, the height of the column.

Solution:

Let us consider a portion of a ray between x and $x + dx$ inside the liquid solution. Let the angle of incidence of ray at x be θ and let the ray enters the thin column at height ν . Because of the refraction it deviates from the original path and emerges at $x + dx$ with an angle $\theta + d\theta$ and at a height $y + dy$.

From Snell's law.

 $\mu(y)$ sin $\theta = \mu(y + dy)$ sin $(\theta + d\theta)$...(i)

Let refractive index of the liquid at position y be $\mu(y) = \mu$, then

$$
\mu(y + dy) = \mu + \left(\frac{d\mu}{dy}\right)dy = \mu + kdy
$$

where $k = \left(\frac{d\mu}{dv}\right)$ = refractive index gradient along the vertical dimension.

Hence from (i), $\mu \sin \theta = (\mu + kdy) \cdot \sin (\theta + d\theta)$

 μ sin $\theta = (\mu + kdy)$ (sin θ cos $d\theta$ + cos θ sin $d\theta$)

$$
\mu \sin \theta = (\mu + kdy) \cdot (\sin \theta \cdot 1 + \cos \theta \cdot d\theta)
$$

For small angle sin $d\theta \approx d\theta$ and cos $d\theta \approx 1$ μ sin $\theta = \mu$ sin $\theta + kdy$ sin $\theta + \mu \cos \theta \cdot d\theta + k \cos \theta dy \cdot d\theta$

$$
kdy \sin \theta + \mu \cos \theta \ d\theta = 0 \implies d\theta = -\frac{k}{\mu} \tan \theta \ dy
$$

 \ldots (ii)

But
$$
\tan \theta = \frac{dx}{dy}
$$
 and $k = \left(\frac{d\mu}{dy}\right)$

$$
d\theta = -\frac{k}{\mu} \left(\frac{dx}{dy}\right) dy \implies d\theta = -\frac{k}{\mu} dx
$$

Integrating both sides, $\int_{0}^{\delta} d\theta = -\frac{k}{\mu} \int_{0}^{d} dx$

$$
\Rightarrow \quad \delta = -\frac{kd}{\mu} = -\frac{d}{\mu} \left(\frac{d\mu}{dy} \right)
$$